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I. INTRODUCTION

Let lIn denote the family of monic polynomials of degree n,

For any real p ~ 1 we seekfn(x), the member of lIn with least L p norm over
(-1,1), i.e., such that

for every member ~(x) of [[n'

The solution of this problem for p = 1,2, 00 is well known. Suitably
normalized, these are

Un(X) = TchebychetT polynomial of the second kind

2 Pn(x) = Legendre polynomial

00 Tn(x) = TchebychetT polynomial of the first kind

All three are, in fact, ultraspherical polynomials, i.e., sets of polynomials
which are mutually orthogonal on (-1, 1) with a weight function of the form
(1 - x 2 )Q. Moreover, the values of a corresponding to the three cases are
1/2, 0, -1/2, respectively, i.e., a = l/p - 1/2. It was tempting to conjecture
that the same might hold for all p ~ 1. However, examination of some
special cases quickly refuted this conjecture. This raised the question of
whether the extremal polynomials, for some or all values of p, other than
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1, 2, 00 might be orthogonal with some other weight functions. We still have
no final answer to this question, but shall try to show in this paper how we
convinced ourselves that the answer, when given, will be negative, i.e., that
no such orthogonality holds for any other values of p. This conclusion is
based largely on numerical computation, described in Sections 4, 5 below.
Indeed, one of the purposes of our paper is to give an example of how a
computer may be used to provide just such conviction.

II. PROPERTIES OF THE EXTREMAL POLYNOMIALS

(1) For any given p ~ 1, and all n (0, 1,2,... ) there exists an extremal
polynomial f:t(x) = x n + a~P)xn-l + ... + a~) such that

(2.1 )

for all ¢J(x) in IIn.

(2) The extremal polynomial is unique, i.e., strict inequality holds in
(2.1) unless ¢J(x) =f<,{')(x).

(3) For each n, all the zeros off~)(x) are real and lie in the interval
-1~x~l.

(4) The polynomialsf~)(x)are odd or even according to the parity of
n.

Proof (1), (2) Existence and uniqueness both follow immediately from
classical considerations (cf [1, Chap. 1, Section 6, Chap. 6, Section 6]).

(3) This is a special case of a classical result established by Fejer [4]
for a wide class of extremal problems, of which ours is a special case. (In
fact, it can also be shown that the zeros of eachf::')(x) are distinct.)

(4) Iffix) is any monic polynomial, then so also is (-l)nfn(-x) and
it has the same L p norm over (-1, -1). It follows by (2), that
(-It f::')(-x) =f::')(x).

III. ORTHOGONALITY

If the family of polynomials!::')(x) {n =0,1, 2, ... } were orthogonal with
any non-negative weight function, then they would have to satisfy a relation
of the type

(3.1 )
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with constant A:f), B:f>, C:f) ([3, p. 158]). Moreover it follows from 11(4)
and from the monocity of the f:fI(X) that A~) = 1, B<,:') = 0, i.e..
f~ll(X) -xf~)(x) would have to be proportional tof~!.I(X), as is the case
for p = 1,2, 00. We have not proved that it does not hold for any other p,
but shall describe here how we convinced ourselves that this is indeed the
case.

For any given p ~ 1, suppose that

f<t)(x) = x 2
- a,

Pt>(x) =x3
- bx,

fY) = x 4
- cx2 +d.

The recurrence relation (3.1) would require that

fY)(x) - xf<t')(x) = Iif<t)(x), (3.2)

where k is a suitable constant. But the left-hand side of (3.2) is (b - c) x 2 + d
and so k=b-c. We thus get

(b - c) x 2 +d = (b - c)(x 2-a)

and hence

d
a+-b--=O.

-c
(3.3)

Our first step was to determine a, b, c, d numerically for values of p and
for every such value, to calculate

d
Rp=a+-

b
--·
-c

Extending this idea we also evaluated numerically e,j, g, h,j, where

(3.4)

f<t>(x) = x 5
- ex3 +fx,

rt>(x) = x 6
- gx4 +hx 2

- j.

For orthogonality f~P)(x) - xfY>(x) would have to be proportional toPt>(x),
and f~I(X) - xf<t>(x) to fyl(x). This would lead to the relations

b_ f - d =0,
e-c

h-f
c---=O,

g-e

d--j-=O.
g-e

(3.5)
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We therefore evaluated also, for a range of values of p,

f-d
S =b---

p e- c'

h-f
T =c---

p g- e'

j
U =d---.

p g-e

(3.6)

Values of Rp, Sp, Tp, Up as functions of p are given in Table I and as graphs
in Fig. l. They show quite clearly how all four functions vanish at p = 1, 2,
and 00, but nowhere else. We note, incidentally, that all four of these
functions have their respective maximum and minimum at closely
neighbouring values of p. In fact, the computation of the coefficients of
f',fl(X) and of the resulting "discrepancy functions of p" was continued up to
n = 7, for 1 :r;;;.p:r;;;. 50. These show exactly the same behaviour as Rp' Sp, Tp•
Up but we have not included them either in Table I or in Fig. 1.

TABLE I

p Rp X IOJ SpX IOJ Tp X 10" Up X 104

I 0 0 0 0
1.2 016 0.12 0.15 0.84
1.4 0.19 0.14 0.18 0.93
1.5 0.18 0.13 0.17 0.84
1.6 0.16 0.11 0.14 0.71
1.8 0.086 0.056 0.076 0.36
2.0 0 0 0 0
2.5 -0.23 -0.14 -0.19 -0.84
3.0 -0.43 -0.24 -0.34 -1.49
5.0 -0.91 -0.47 -0.67 -2.73
7.5 -1.12 -0.54 -0.78 -3.08

10.0 -1.17 0.55 -0.79 -3.07
12.5 -1.17 -0.54 -0.77 -2.96
15.0 -1.14 -0.52 -0.74 -2.87
20.0 -1.07 -0.47 -0.68 -2.57
25.0 -1.00 -0.43 -0.62 -2.34
30.0 -0.93 -0.40 -0.57 -2.15
40.0 -0.82 -0.35 -0.49 -1.86
50.0 -0.73 -0.31 -0.42 -1.60
60.0 -0.67
70.0 -0.61
80.0 -0.57



MONIC POLYNOMIALS WITH MINIMAL NORM 191

0.8

4
UpxlO

8070605040

-...p

302010

0.4

Of-ll---+---+----.,r---+--+----.,---+-----4

-0.4

-0.8

-1.6

-2D

-2.4

-2.8

-3.2

FIG. I. Values of Rp• Sp. Tp, and Up as functions of p.

IV. ASYMPTOTIC ESTIMATES FOR LARGE P

The computation described in Section III and the resulting graphs in
Fig. 1 do not, of course, prove that there are no other values p for which the
f::')(x) are orthogonal. Indeed we have not proved anything which could rule
out the possibility of further values of p where all functions of (3.4) and (3.6)
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vanish simultaneously. All that we assert here is our own belief that this is
not the case.

It is certainly true that R p < 0 for all sufficiently large finite p. Indeed we
show below that, for such p.

I
R p - - 48p {Iogp + log;or + 33 log 2 - 24 log 3}

1
- - 48p {log P - 2.3481 }. (4.1 )

We can see from Table II how this approximates the actual value of R p as
determined by numerical methods. To derive (4.1) we had first to estimate
a, b, c, d for large p. Defining

(4.2)

(4.3)

(4.5 )

Hp(a, p) =r (a 2 - X2Y'(p2 - x 2Y' dx
o

~ .1

+ I (x 2 - a 2)p(p2 - x 2)p dx + I (x2 - a 2)P(x2- p2)p dx, (4.4)
'0 .~

we estimated these functions for large p by the Laplace method ([2,
Chap. 5]). This led to

()
1 p+1 J~ (l-a)p+IFa--a -+...:..-----:..--

p 2 P 2p'

(4.6)

TABLE II

p Actual value Approximation (4.1) Error ('!!o)

30 -0.928 X 10- 3 -0.731 X IO- J 21
40 -0.818 X IO- J -0.698 X 10 - J 15
50 -0.733 X 10- 3 -0.651 X 10- 3 II

60 -0.665 X 10- 3 -0.606 X 10- 3 9
70 -0.611 X 10- 3 -0.566 X 10- 3 7
80 -0.566 X 10- 3 -0.530 X 10- 3 6
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(1 - c + dy+ 1

+ ,
2p(2 - c)
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(4.7)

where c = a2+ fJz, d = a2fJ2.
The next step was to determine a, b, c, d so as to minimize Fp , Gp , and

Hp, i.e., to solve the equations dFp/da = dGp/db = 3Hp/oc = oHp/3d = O.
The analysis was rather complicated but led, in the end, to

1
a ~ 0.5 - 8p log(2np),

1 (27np )b~0.75 --log --
12p 8'

1
c ~ 1 - -6 log(8np),

1 P

1
d ~ 0.125 - 64p log(32np).

(4.8)

Substituting these in (3.4) we get (4.1).
Unfortunately, the asymptotic estimation of e,... , j proved prohibitively

complicated and we have contented ourselves, for the time being, with the
evidence of Rp •
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